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1 Random Problems

A problem (a Boolean function f: {0, 1}N 4 {0, 1}) is characterized by its
randomness (a la Kolmogorov) R(f) and its entropy (ti la Shannon) H(f).
Random problems have large values of R(f), and are a good model for
many natural pattern recognition problems. R(f) and H(f) are shown to
be lower and upper bounds, respectively, for a minimum-size circuit that

computes f. False entropy, namely the hidden structure of a problem, is
related to the difference between H(f) and R(f).

p."5

1.1 Introduction

It is difficult to find good mathematical models for many natural problems
such as pattern recognition. Not only does this difficulty preclude finding
good solutions for these problems, but it also precludes estimating their
complexity using the standard tools of the theory of computational com-
plexity (Traub, 1985). Part of the difficulty can be traced to symptoms
such as ill-definition, fuzziness, and inexactness. However, the difficulty of
modeling these problems may be inherent in some cases. 'To illustrate what

., -.~-we mean, consider the following problem:

A. Input: 255-45-5237 Output: Is this the social security number of a
convict?

To solve this problem in general, one needs a list of the social security
numbers of all convicts. It is highly improbable that there exists a simple
relation between the social security number and the legal status of a person.
Barring such a relation, one cannot hope for an algorithm to 'manipulate'

V the input so as to arrive at the output. In other words, the above list
cannot be compacted into a simple algorithm. Contrast this problem with
the following familiar problem:

B. Input: 255,455,237 Output: Is this number a prime? "ion For

Although one can resort to consulting a list of primes, there is the option , [1

of writing a simple algorithm to test for primality and applying it to this ucd

number. It may take a long time to execute, but the algorithm itself is ' , .o
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short in comparison with the list of primes. What is the basic difference
between problems A and B? The notion of a prime has a short effective
definition, while the notion of a convict does not. The long list of social
security numbers of convicts is the effective definition of the notion of a
convict.

Problems which do not have a concise effective definition are called
random problems (Abu-Mostafa, 1985). Randomness here is based on the
length of the shortest algorithm (Kolmogorov, 1965), and has nothing to do
with probability or fuzziness. If this length exceeds a certain threshold, the
problem is considered random. On the other hand, for structured problems

41 such as B, the algorithm can be quite short. The difficulty in modeling
random problems is inherent. This is because an effective model could be

* viewed as an algorithm (not necessarily a very efficient one), and hence has
to be long in the case of a random problem.

Many natural pattern recognition problems can be considered random
S.-problems. This fact is usually overlooked due to the apparent 'structure'

some of these problems have, e.g., visual images which have many clear reg-
ularities. However, after these regularities are considered, a major random
component is left. A complete model for visual scenes, or an algorithm for
computer vision, will cover the random as well as the structured compo-
nents of the problem, and hence will have to be sufficiently long.

Three factors contribute to the significance of random problems and
widen their scope. First of all, the definition of algorithmic randomness is
based on universal Turing machines (Turing, 1936) which are more powerful
than any physical system. This makes some problems which are not truly
random look random for all practical purposes and will have to be treated
as such. The second factor is that there is no constructive way in gen-

eral to find the shortest algorithm for an arbitrary problem (Kolmogorov,
1965). In spite of its generality, this fact reflects the difficulty of modeling
and suggests that some problems will have be treated as random problems
just because no one will be able to find their concise model. Finally, al-

though it may be logically impossible to tell whether a problem is random
(Chaitin, 1982), a problem generated by probabilistic means is very likely
to be random. Therefore, the assumption that a natural problem is random
is probably valid.
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This last remark leads to another observation. Most of the practical
random problems turn out to be ill-defined as well. However, we maintain
separation of concerns in this paper. Only randomness, as defined above,
is assumed in the problems we address here. Our aim is to characterize
random problems and their computational demands.

In section 2, we introduce the formal definitions of randomness and

entropy and prove some basic facts about them. In section 3, we relate
these quantities to the complexity of implementing the function. Finally,
we draw some insight into the class of random problems in section 4. We
shall restrict ourselves to binary alphabets for simplicity; the generaliza-
tion to arbitrary finite alphabets is straightforward. All logarithms and
exponentials are to the base 2.

1.2 Randomness and entropy

Let N be an arbitrary fixed positive integer and consider the Boolean func-
tions of the form f : {0, 1}1 '-p {0, 1}. Any such function is fully character-
ized by its truth table which can be listed as a (2N-bit long) binary string
r(f) = r0r1 ... ..r 2 N- 1 , where rt is the value of f when the argument is
the N-bit binary representation of the number k.

Let U denote a fixed universal Turing machine with binary input alpha-

bet {0, 1}. U takes a binary string p as input (program) and runs on p to
produce an output string s (if it eventually halts). In this case, we say that

U(p) = s. Based on U, the Kolmogorov complexity of a string s is defined
by

K(s) = min {jp I U(p) =s,

where IPI denotes the length of the string p.
* The Kolmogorov complexity measures the degree of randomness of a

string; if two binary strings of the same length have different Kolmogorov
complexities, the one with the higher complexity is more 'random'. The
randomness of a Boolean function f is based on the Kolmogorov complexity
of its truth table;

R(f) = log K (r(f)) bits,
Z. where the logarithm (to the base 2) is taken to make the range of R(f) run

from ,z 0 (where p is a very short program, hence r(f) has a very regular

0. 3
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pattern) to N (where p is as long as r(f), hence r(f) has no pattern
whatsoever).

A problem will be considered random if the corresponding function f
has a large value of R(f). How large? We fix a threshold Ro and make the
definition relative to R 0 . The choice of a particular Ro is not critical to most
of the theory, and may therefore be motivated by practical considerations.

Definition. A problem f: {0, 1}N {0, 1} is said to be random if R(f) _
R0 .

Since R(f) can be at most ; N, the threshold R0 should be smaller than
N. This is necessary to make the definition interesting, i.e., to guarantee
that some of the problems are indeed random. In fact, the overwhelming
majority of all problems will be random even if Ro is only a few bits smaller
than N. To see this, we observe that there are 2 2 N problems (Boolean

functions of N variables), while there are at most 20+ 21+... + 2 K < 2 K+i

programs p of length < K. Therefore, At most 2 2R°+l problems can be non-
random, and this is only a negligible fraction of 22N.

On the other hand, if R 0 is not very small, it will be impossible to pin-

point a specific problem and prove that it is random. This is a consequence
of Chaitin's version of Gbdel's incompleteness theorem; there is a number
K0 (depends on the axiomatic system) such that no statement of the form
'K(s) > K 0 ' is provable (within the system). If we pick R0 _> log K 0, where
K0 corresponds to axiomatic set theory, it will be impossible to prove (using
regular mathematics) that any given problem is random.

The difficulty of proving randomness for specific problems is by no
means a serious drawback for the notion of random problems. There are
many cases where the probability that the problem is random is sufficiently

* high to warrant treating it as a random problem, in spite of the lack of a
proof of randomness. In fact, whenever probability is involved in generating
f, the chances are f will be a random problem.

Example. Let f :{0, 11' '-f (0, 1}, where N is large, be generated as
W) .follows. Each bit of the truth table r(f) = To ... r2N - 1 is (independently)

set to 1 with probability c and to 0 with probability 1 - c, where 0 < c < 1.
The expected number of l's in r(f) is therefore E2 N. With high probability
(law of large numbers), f will have about that many l's in its truth table.

6 -4
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Therefore, f will be any of G ,2N functions with approximately equal

probability. This number can be estimated as (2N 2 ()2N, where )1(c) =

- E log f - (1 - c) log(1 - c). We can again enumerate the programs p of
length 0, 1, etc., and conclude that R(f) > N - A with high probability,
where A is only a few bits more than - log M (c).

This example also illustrates that the randomness of a problem is af-
fected by the number of l's in the truth table. If the number of l's is
very small, one can write a short program p to generate r(f) by specifying
where the 1's are in r(f). The same can be done in the dual case where the
number of O's is small. Problems which have few l's (or few O's) in their
truth tables are of special interest because they model the cases where only
a small fraction of inputs to f are of interest, a condition commonly en-
countered in natural problems. The quantity that captures this property

.,*-

is entropy.
Let h(f) = min{ If-'(1)l , If-'(0)1 }, i.e., the number of l's or the num-

ber of O's (whichever is smaller) in the truth table of f. The (deterministic)
entropy of f is defined by

H(f) = log(1 + h(f)) bits.

The logarithm (and the added 1) make the range of H(f) run from 0 (the
two constant functions) to _ N (functions with as many l's as O's). Hence,
H(f) has essentially the same range as R(f).

Except for a small 'error' term (at most the order of log N), H(f)
serves as an upper bound for R(f). To see this, we assume that r(f) has

*only a limited number of l's (the dual case of O's is similar) and write a
• relatively short program p that generates r(f). The program is a listing of

the locations of the l's in r(f). Since each location in r(f) can be specified
by N bits, the length of p is approximately N2H(f). The logarithm of that,
which is an upper bound for R(f), is H(f) + log N. An enumeration of all
programs of length 0, 1, etc., and of the number of functions of a certain

O level of entropy shows that H(f) is a tight upper bound for R(f). In fact,
for most functions, R(f) ; H(f).

It is interesting to notice that R(f) and H(f) can be considered two
extremes in a spectrum of quantities that measure the complexity of spec-

O5
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ifying f based on models of varying degree of sophistication. On the one
hand, H(f) mesures the complexity of specifying f if the specification is
done by simply listing the l's or the O's of the function. Hence, the model
on which the measure H(f) is based is the 'lookup' model. On the other
hand, the model on which R(f) is based is the universal Turing machine.
R(f) measures the complexity of specifying f based on a very powerful tool
that generates r(f) from the specification. Hence R(f) is as small as can
be; it can take advantage of any effective property f may have. There are
many models that fall between these two extremes. For example, a time-
bounded version of R(f) can be based on the time-bounded Kolmogorov
complexity of r(f). The underlying model will be a universal Turing ma-
chine that is allowed to run for only a limited number of steps. Another

* model which is treated in more detail in section 3 is combinational circuits,
where regularities of f that can be captured by logic elements help reduce
the size of the specification of f.

The difference between H(f) and R(f) is a significant quantity. It is
*called false entropy (Abu-Mostafa, 1986) and expresses how much 'hidden'

structure the problem has. This interpretation follows from the above dis-
cussion; the model on which H(f) is based is the lookup model that does

not take any advantage of the location of the l's and 0's of f, just their
number, while the model on which R(f) is based takes advantage of any

" . effective regularity, no matter how subtle, to reduce the size of the spec-

ification. The difference expresses how much of the entropy of f can be
removed if the structure of f is taken into consideration. The problem
of pattern recognition hinges on removing as much of the false entropy as
possible.

IV P 1.3 Complexity bounds

V Consider the problem of implementing the function f, e.g., using a combi-
national circuit (Savage, 1976). We wish to estimate the complexity of such

-.m implementation, and investigate the relation between complexity, entropy,
and randomness. Since N is fixed, the number of input instances is finite

- and our measure of complexity will be a nonuniform one, i.e., not based on

a finite process that works for any of an infinite number of input instances.

0 6
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Nonuniformity of the complexity measure in our context is more realistic
for two reasons. First, the pattern recognition problems we are modeling
are finite in nature with no clear extension into an infinite problem. Sec-
ondly, the systems that are projected for pattern recognition are based on
learning, i.e., automatic development of the system from training samples.
As such, the final system does not have to be uniform although the learning
mechanism itself may be uniform.

There are several ways of defining circuits all of which are equivalent,
and a corresponding number of ways of defining circuit complexity (size) all
of which are within a constant (independent of N and f) from one another.

- For concreteness, we give one such definition in detail. Our circuits are

combinational (loop-free), with unlimited fan-out (an output of a gate can
be used as an input to any number of gates). The only type of gate we use
is the two-input NAND gate (whose output is 0 if, and only if, both inputs

**.'-': are l's) which by itself is a complete basis (any Boolean function can be

simulated using a circuit consisting exclusively of copies of this gate). The
independent Boolean variables (inputs of f) are called x, XN, and are
available to be used as inputs to any gate in the circuit.

A circuit is a chain r = - -yq of Q gates. The outputs of these gates
are called yl, " ', yQ, respectively. Each gate -1q can have as inputs any of
the independent variables x1 , xN as well as the outputs of the previous
gates yl, ,Y_. Since all the gates are two-input NAND gates, we only
need to specify the inputs to each -y. Therefore, formally, each -y. is a pair
(not necessarily distinct, order doesn't matter) of elements from the set

,{X1,' , XN, Y1,5' Yq-1}. Finally, the output of the circuit is the output of
the last gate, yQ. We say that a circuit r simulates a function f if f = yQ
for all assignments of the variables x1 , , XN. The number of gates in r,
namely Q, is denoted by c(I). The (circuit) complexity of a problem f is
defined by

C(f) = logmin{c(F) Ir simulates f} bits.
*. Again we have the range of C(f) running from ; 0 (simple functions) to

N (complex functions). The fact that the maximum value C(f) can
assume is ; N follows from the exhaustive implementation of any Boolean

function of N variables that uses ; 2N gates (which can be improved to

"Io 2N/N due to a classical result of Shannon). We now show that, except for

0., 7
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an error term of at most the order of log N, the value C(f) is at least R(f)
-~ and at most H(f), which we write as

R(f) -- C(f) H(f).

This relationship reflects the fact that combinational logic is more sophis-
ticated than table lookup, but less sophisticated than universal Turing ma-
chines.

To see that C(f) -< H(f), consider the case where f has h(f) i's (the
-. dual case is similar). One can build a circuit with N one-input NOT gates,

h(f) N-input AND gates, and one h(f)-input OR gate to simulate f (irn-
plementing the i's of the function directly by a sum of products). One can
replace all these gates by at most aN(l + h(f)) two-input NAND gates

* (where a is a suitable constant). Hence C(f) : H(f) + log N + constant.
Therefore, apart from the error term, the bound is valid.

To see that C(f) >- R(f), consider a program p that encodes a minimum-
size circuit F =Y ... -fQ that simulates f.- Each -jq is a pair of variables
selected from at most N + Q variables. Hence it takes at most 2 log(N + Q)
bits to encode each -y,. Hence, the program that encodes the whole circuit
r will be e~t most axQlog(N + Q) bits long (where a is a suitable con-
stant). The logarithm of that is an upper bound for R(f). By definition,
log Q = C(f). The other (error) terms are at most the order of log N since
Q is at most the order of 2 '.

The fact that R(f) is a lower bound for C(f) implies that random
problems cannot be solved by small circuits.

1.4 Conclusion

1 The notion of random problems was introduced to capture the inherent
difficulty of natural pattern recognition problems and estimate their corn-
putational demands. The paper introduced the main concepts and proved
some basic facts for the idealized case where the problem is defined as a
deterministic Boolean function. The results are summarized in the rela-
tionship

*08
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The theory of rate-distortion may be employed to accommodate the
practical case of continuous-valued functions. To accommodate the case
where there is a probability distribution over the input variables, one can
define a probabilistic version of the measures R(f), H(f), C(f), e.g.,

R 6 (f) = min{R(g) I Pr(f j g) < 8}.

In words, the randomness of f with tolerance for error 6 of the time is the
minimum randomness of any function g that differs from f at most b of the
time.

We also made the remark that the difference between H(f) and R(f)
highlights the hidden structure of the problem which a pattern recognition

* system has to be able to detect, at least partially.
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2 Higher Order Associative Memories and

their Optical Implementations

The properties of higher order memories are described. The non-redundant,
up to N-th order polynomial expansion of N-dimensional binary vectors is
shown to yield orthogonal feature vectors. The properties of expansions
that contain only a single order are investigated in detail and the use of
the sum of outer product algorithm for training higher order memories is
analyzed. Optical implementations of quadratic associative memories are
described using volume holograms for the general case and planar holo-
grams for shift invariant memories.

O 2.1 Introduction

Z.- An associative memory can be thought of as a system that stores a pre-
scribed set of vector pairs (x,ym) for m = 1,...,M and also produces
y' as its output when xm becomes its input. We denote by N and No
the dimensionality of the input and output vectors respectively. When the
output vectors are stored as binary No-tuples, the associative memory can

be implemented as an array of discriminant functions, each dichotomiz-
ing the input vectors into two classes. This type of associative memory is
shown schematically in Fig. 1. In evaluating the effectiveness of a partic-
ular associative memory we are concerned with its ability to store a large
number of associations (capacity), the ease with which the parameters of

the memory can be set to realize the prescribed mappings (learning), and
how it responds to inputs that are not members of its training set (general-
ization). In this paper we discuss a class of associative memories known as

0 higher order memories that have been recently investigated by a number of
separate research groups[1,2,3,4,5,6,7,8j. Our motivation for investigating
these memories was the increase in storage capacity that results from the
increase in the number of independent papameters or degrees of freedom
that is needed to describe a higher order associative mapping. The rela-
tionship between the degrees of freedom of a memory and its ability to store
associations[91 is fundamental to this work and we state it in the following

subsection as a theorem.

*. 11
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2.1.1 Degrees of freedom and storage capacity

Let D be the number of independent variables (degrees of freedom) we have
under our control to specify input-output mappings and let each parameter
have K separate levels or values that it can assume. We define the storage

'.S capacity C to be the maximum number of arbitrary associations that can
be stored and recalled without error.

Theorem 1
C < D N0 2 K

No(

Proof : The number of different states of the memory is given by KD and
the total number of outputs that a given set of M input patterns can be
mapped to is 2 NM . If the number of mappings were larger than the number
of distinct memories then mappings would exist that are not implementable.
Requiring that all mappings can be done leads to the relationship of the
theorem.

The equality in Eq. 1 is achieved by Boolean circuits such as programmable
logic arrays and an extreme case of a higher order memory we will discuss
later. When the equality holds, resetting any one bit in any one of the
parameters of the memory gives a different mapping. Such a memory can-
not learn from the training set to respond in some desirable way to inputs
that it has never seen before. The only way to get generalization when
C = D log12 K/No is to impose on it the overall structure of the memory be-
fore learning begins. One of the appealing features of neural architectures
is the considerable redundancy in the degrees of freedom that is typically
available. Therefore, there is hope that while a memory learns specific
input-output correspondances it can also discover the underlying structure
that may exist in the problem and learn to respond correctly for a set of
inputs much larger than the training set. Moreover the same redundancy
is responsible for the error tolerance that is evident in many neural ar-
chitectures. Higher order memories are generally redundant and they can
provide us with a methodology for selecting the degree of redundancy along
with the number of degrees of freedom and the associated capacity to store
random problems.

Ii 12
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It is important to keep in mind that Eq. 1 holds for arbitrary mappings.
If the input and output vectors are restricted in some way that happens to
be matched to the architecture of a particular associative memory then it
may be possible to overcome this limit. However, selecting the architecture
of the associative memory such that it optimally implements only a subset of

%Q all possible associations is basically equivalent to choosing the architecture
so that it generalizes in a desirable way. For instance suppose that we
design an associative memory so that it is shift invariant (i.e. the output
is insensitive to a change in the position of the input)[4,10]. Then this
system will respond predictably to all the shifted versions of the patterns
that were used to train it. We can equivalently think of this system as
having a larger storage capacity than the limit of Eq. 1 over the set of shift
invariant mappings. If we can identify a priori the types of generalization
we wish the memory to exhibit and we can find ways to impose these on
the architecture then this is certainly a sensible thing to do. Higher order
memories can also provide a convenient framework within which this can
be accomplished.

The penalty we must pay for the increase in the storage capacity that is
afforded by the increase in the degrees of freedom in a higher order assoca-
tive memory is increase in implementation complexity. The computer that
implements a higher order memory must have sufficient storage capacity
to store a very large number of parameters. Moreover it must be capable
of addressing the stored information with a high degree of parallelism in
order to produce an output quickly. We will discuss in this paper optical
implementations of second order memories and we will show a remarkable
compatability between the computational requirements of these memories
and the ability of optics to store information in three dimensions.

2.1.2 Linear discriminant functions and associative memories

.4 We will consider as a precursor the most familiar associative memories
that are constructed as arrays of linear discriminant functions[14]. A linear

*discriminant function is a mapping from the sample space X, a subset of
RN, to 1 or -1.

y sgn{wt. x + Wo}

* 13
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- sgn{wO + WI+1 + W2 X2 + + WNXN} (2)

where sgn is the signum function, w is a weighting vector and w0 is a
threshold value. In this case the capacity is upperbounded by (N+i) log 2 K
according to our definition of capacity. In this relatively simple case the ex-
act capacity is known to be equal to C = N + 1 assuming the input points
are in general position and K = oo[11]. An associative memory is con-
structed by simply forming an array of linear discriminant functions each
mapping the same input to a different binary variable. Several algorithms
exist for training such memories including the perceptron, Widrow-Hoff,
sum of outer products, pseudoinverse, and simplex methods[13,14,15,16]
This memory can be thought of as the first order of the broader class of
higher order memories that contain not only a linear expansion of the input
vector but also quadratic and higher order terms. We will see in section 3
that the learning methods that are applicable to the linear memories gen-
eralize direcly to the higher order memories. First however we will describe
the properties of the mappings that are implementable with higher order
memories in section 2. Finally, in section 4 we will describe optical imple-
mentations of quadratic optical memories[2,12].

2.2 Properties of higher order memories

A C-function is defined to be a fixed mapping of the input vector x to an
L-dimensional vector z followed by a linear discriminant function.

-Vy = sgn!. Z() + W01
= sgn{Wz + W'2 Z2 + + WLZL + WO} (3)

where z(j_) (z1 (x),z 2(x), ... ,zL(l_)), _' is an L dimensional weighting
vector and z(x) is an L dimensional vector derived from x. The storage ca-
pacity in this case is equal to the capacity of the second layer L+ 1[11] if the
samples z are in general position whereas the upper bound on the capacity

O from Eq. 1 is (L + 1) log 2 K. The inefficiency in this case is log 2 K bits,
the same as for the linear discriminant function even though the capacity
can be raised arbitrarily by increasing L. It is not known what the exact

relationship between L and K is. I.e. we do not know whether for higher

14
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dimensions we need better resolution for the values of the weights to be
capable of implementing a fixed fraction of the linear mappings. Recently
Mok and Psaltis[17] have found the asymptotic (large N) statistical capac-
ity to be C = N for a linear discriminant function with binary weights.
This result implies that even for large N for the vast majority of linear di-
chotomies, a large number of levels is not required. Therefore a C-function
is an effective and straightforward method for increasing the capacity of an
associative memory without loss in efficiency.

A higher order associative memory is an array of C-functions with the
mappings z() being polynomial expansions of the vector x. The schematic
diagram of a higher order associative memory is shown in Fig. 2. When
the polynomial expansion is of the r-th order in x then the output vector

* y is given by
y::- , =g ... +W L ... + ..., + +10

(4)
where I 1,..., No, W k is a k-linear symmetric mapping and WL' is equiv-
alent to w in Eq. 2. According to Eq. 3

Zi(jj) - X",' ... ZX (5)

where j = 1,2,... ,L, Pji E {1,2,... ,N} for i 1,... ,r such that all
zj are different and n1,n 2, ... n,= 0,1. Then L is (N+')[11], and henceFr
the capacity bound is ((N+7) + 1) log 2 K as before. For example, if r = 2,
the function becomes quadratic and has the form y, = _xW2X + W,1x + wt0

and the number of nonredundant terms in the quadratic expansion are
L (N + 1)(N + 2)/2.

* The components of the vector z are binary-valued if x is binary. In this
case, the samples cannot be assumed to be in general position since there are
at most N + 2 binary vectors in N dimensional space which lie in general
position. We will evaluate the effectiveness of higher order mappings in
producing representations z(x) that are separable by the second layer of

* weights by calculating the hamming distance between z vectors given the

hamming distance between the corresponding x vectors. We expect that if
the Hamming distance between two binary vectors is large then they are
easy to distinguish from one another.

* 15



2.2.1 Complete polynomial expansion of binary vectors

There are at most 2 ' nonredundant terms in any polynomial expansion
(Eq. 4) of a binary vector x in N dimensions. First, we will consider the
following N-th order expansion (or equivalently bit production) for the
bipolar vectors x in N dimensional binary space {1, -1)N:

"qtw
° ,

If we apply a linear discriminant function to the new vectors z then the

capacity becomes 2 N which is equal to the total number of possible input
vectors[2. In other words this memory is capable of performing any map-

. ping of N binary variables to any binary output vector y. Of course the
number of weights that are needed to implement this memory grows to 2 N

times No, the number of bits at the output. In what follows we show that
in this extreme case the vectors z become orthogonal to each other.

-Theorem 2 If we expand binary vectors x) (m = 1,2, ... 2  in XB

If{1, _11N to 2 n dimensional binary vectors z' according to Eq 6, where N
.as the dimensionality of the original feature vectors, then
(a)< -1,z-2 > wNoM, where <r> is an inner product,
(b) 1-jzm= 0,
(c) Em z7nz' 2 N 6 hj and En~ zT 0.

Example :The following table is for the case of N . Note the orthog-
onality and the numbers of I's and -I's in the new vectors and the set
of each component of them except the first vector and the set of the first
components.

X1  X2  X3  1 Xea 2  X3  X 2  .2X3  X3Xi XX2X3

-1 o 1 a 1 y 1 1 1 1 1

1s 1h -1esonlt 1 1h 1rgia -1aur 1etors,1the
1 .()<z l ~ 2 > 2N1 1 1 hee 1 ,.-1 1 -1 inne 1ro-1t
1(1 - 1 - 1 -1 1-)

* -1~~z. Z 1 1 - 1 -1 1 -1
-1 mZ~~, 12 -1 1Nii -nd 1, z 1 -1-O1.
-1apl -: 1h olwn -ale -s 1o th1cs -1 -1. ot 1h rh

-- 1 -1 -13 1 -:1 -1 -1 lT 12X T31 -T1T

* . --1.1 -1 1 -'1 -1 -1--1.1



Table 1.

",- Proof: (a) Let us consider any two different binary vectors in the binary
space of {1,-1}N whose Hamming distance is n (1 < n < N). When they

are expanded to two 2n dimensional binary vectors, the number of k-th
order terms that have opposite sign in the two expansions is(n) (N-n) + (n) (N -) +()(N-n .......... (7),
Notice that two polynomials have different values if, and only if, they have
odd number of terms whose signs are opposite. The Hamming distance
between the two fully expanded (up to order 2N) vectors can be calculated
by adding the number of terms that have different sign over all the orders
of the expansion:

(nt) (N - nt) + (n) (N - n) + {(nt) (N;- n) + (n) (N - n)}

+ (n)(N-n)+(n)(N-n)} ............

C; ± /(;)(N :) +(;)V ) +(;)(N ) +
1 N -n- 3 (N-n- 3 + 5 N-n- 5 )'

iodd _=, = 2'I - 1.  s
2 (8)

The fact that the Hamming distance is 2 N-1 for any two expanded vectors
(for any n) proves that all of the 2N vectors become orthogonal and that
< Zrn, ZM >= 2Nb45Im 2 .
(b) Just think of the cases where one of the two vectors is (1, 1,..., 1).
Then, all the other vectors z have equal number of l's and -l's because
their Hamming distances are all 2 N-1 from the (1, 1, ... , 1) vector.

(c) See reference 1131, page 109.
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Slepian has discussed this orthogonalization property as a method for
designing orthogonal codes and has given a different proof for it[181. The
proof presented here is useful for characterizing higher order memories be-
cause it allows us to trace the contribution of each order of the expansion to
the orthogonalization and immediately derive results about the properties
of quadratic and cubic memories. The output vector y is

= %. €z7. (10

y, =-g { i g { l"i 9

m=1

Thepinhsdsusdti orthogonalization property oftefl xaso s estg becus

whesnn orhgoI Noe and as i a dimesinafeighng rof vor [8. The

itrsows petdh sueu orca trzn higher order memories prvdbeomlt-rmeoktamatake s us te sacimples erontr the f iearh dascrin ao t fnion to
the forll calit of as im ealy k-up e i outer or e pr orties an

indeedaroide an vuble toolmoris dhesigning digtalogramabelgia s t a h e a n

wy, = E=-z- (10)
_':;' ==

2.. EO)i hc aecnieigafl xpansion of th inpute datar

isThe omtely 1, o ofethe q ion. tn suhecansen weis ine rel inteto ue

in anhxpso that crontain aelreeog ubr ftrst provideacopeefmwrktt

the capci the oimplearnt the rb e arm a scianid n t susection we
ae flet priletis of aial e aios th ter rder al te ters of

aras nti aehwvr we are i . e inasoiaie0eore

on2 ordExpansion of a inngl date

0 Th compltelygoauztonpet of the qusin.Ifuch cxasesio wears el interestin eds

,: "in anhowso that cotisighgeeoghnmer orde temories provideacopeefmwrktt

tae rmthe capcimpeedst ern the lea hadIrnt susction, we

anle ull roprtie of partilexnpaook-up tha Hiherloder almhems oan

SiWe will first consider the memory consisting of all the terms of a quadratic
expansion with binary input vectors.

y, sgn{E EwL,,XiX,}
i 3
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L
" sgn{-wlkzk}. (11)

k=I

The number of nonredundant terms in a quadratic expansion of a binary
vector is L = N(N - 1)/2. Let two input vectors have a Hamming distance
n. The angle between these two vectors is given by the relation cos 01
1 - (2n/N). The angle 02 between the corresponding z(x) vectors can be
readily calculated since we know their Hamming distance from the proof of

*theorem 2(a):

COS 024n(N - n)
cos02  1 N(N- 1)

* 1-4p+4p2 = (1 - 2p)2  (12)
,. j

where p = n/N. 02 and 01 are plotted versus p in Figure 3a. For p < .5,
02 is always larger than 01. Specifically for p << 1, 02 = V2 x 01. We see
therefore that the quadratic mapping not only expands the dimensionality
which provides capacity but also spreads the input samples apart, a gen-
erally desirable property. For p > .5 the quadratically expanded vectors
are closer to each other than the original vectors and in the extreme case
n = N, 02 becomes zero. This insensitivity of the quadratic mapping to a
change in sign of all the bits is a property that is shared by all even order
expansions. Next we consider a cubic memory

y, = s
'-" i j k

%. L

"= n{ ,Wz,} (13)

,f. I,,

where L (N) + N. In Figure 3b we plot 03, the angle between two
cubically expanded binary vectors as a function of p. For convenience, 01
is also plotted in the same figure. In this case 03 increases faster with p
for p < .5. For p << 1, 03 = -x 01. At p ;: .4 the cubic expansion
gives essentially perfectly orthogonal vectors while for p > .5, Os remains
smaller than 01 and in the limit p = 1, 03 = 7r. Thus the cubic memory
discriminates between a vector and its complement.

.

-4.,1

,*Ip ""."'-""'''-'-'''.. '"4' .
" 
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The basic trends that are evident in the quadratic and cubic memories
generalize to any order r. The number of independent terms in the r-th
order expansion of a binary vector is (I) which is maximum for r ; N/2.
Again this is not of practical importance because the number of terms
in a full expansion of this sort is prohibitively large. What is of interest
however is the effectiveness with which relatively small order expansions
can orthogonalize a set of input vectors. The angle 07 between two vectors
that have been expanded to the r-th order is given by the following relation:

- os (Nt) -2 F-i=odd (n) (N'-7)
S(N) (14)

We can obtain a simpler expression for the interesting case r << N and
* for small p, 0, -z vr x 01 .

Proposition 3 For r << N,

* cos0, (1 - 2p)". (15)

Moreover, for small p,

o0 ;Z: /tO, (16)

where 01 6z 2v/'.

Proof : For a small r, we can make the approximations (N) z N"/r!,
(n n'/i!, and (N-,) (N -n) -- /(r - i)!. Then, cosO0 is approximated

as follows:

fll7

ScosOr 1 -2 i!(r - p (1 - ,
* irodd "

- (1- 2p)r

because of these relationships:

*"": Z + Z =(1-p+p)7 =1,
S.i=odd i=even

'.-'.-P -1 p )" -(1-2p)'.

i=odd i=even

•'. W20
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When p << 1, cos 0, which is approximately 1- 0/2!, is approximated by
- 1 - 2rp directly from Eq. 14 or from Eq. 15. Therefore, it is followed by

Eq. 16 that Or ; 2V/F.

We plot Or versus p for selected orders in Figure 4 using Eq. 15. It is
evident tha, increasing r results in better separated feature vectors. Poly-
nomial mappings act as an effective mechanism for increasing the dimen-

sionality of the space in which inputs are classified because they guarantee
a very even distribution of the samples in this new space.

2.3 Training of higher order memories

Once the initial polynomial mapping has been selected, the rest of the sys-
tem in a higher order memory is simply a linear discriminant function. As
such it can be trained by any of the existing methods for training linear dis-

criminant functions. For instance the pseudoinverse[1,14,16] can be used to
calculate the set of weights that will map a set of L-dimensional expanded
vectors zM to the associated output vectors ym. Alternatively, error driven
algorithms such as the perceptron or adaline can be used to iteratively train
the memory by repeatedly presenting the input vectors to the system, mon-
itoring the output to obtain an error signal, and modifying the weights so
as to gradually decrease the error. The relative ease with which higher
order memories can be trained is a very important advantageous feature
of this approach. A higher order memory is basically a multilayered net-
work where the first layer is selected a priori. In terms of capacity alone,

there is no advantage whatsoever in having multiple layers with modifiable
weights. From theorem 1 we know that at best the capacity is determined

* °by the number of modifiable weights. For a higher order memory we get

the full advantage of the available degrees of freedom whereas if we put the
same number of weights in multiple layers the resulting degeneracies will
decrease the capacity. The relative advantage of trainable multiple layers is
the potential for generalization that emerges through the learning process.

*. The generalization properties of higher order memories on the other hand
are mostly determined by the choise of the terms used in the polynomial ex-
pansion in the fixed first layer. Thus the generalization properties of these
memories as described in this paper are imposed a priori by the designer
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of the system.
The sum of outer products algorithm that has been used extensively for

training linear associative memories can also be used for training the higher
order memories and this algorithm generalizes to the higher order case in
particularly interesting ways. In addition this particular learning algorithm
is predominantly used for the holographic optical implementations that are
described in the following section. Therefore we will discuss in some detail
the properties of higher order memories that are trained using this rule.

- 2.3.1 The outer product rule

' Let us consider associative memories constructed as an expansion of the r-
order only with input samples in an N dimensional binary space and r > 1.

* Then

sgn{ Z WlIj 2 .. ,,XiXIX, 2 ... x,. } (17)
iI2 i ,

where 1 < ul,j2," .,j; < N, 1 < 1 < No. The number of independent
. terms L in the r-th order expansion is (N. 7 ) which for r << N can be

approximated by Nr/r!
The expression for the weights of the r-th order expansion using the

sum of outer products algorithm[2,3] is

-".Wi, ," y"xx'...x.,  , (18)
M 1 31 J2 Jr

M=1

where M is the number of vectors stored in the memory, ym is an out-
put vector associated with an input vector x as before. With the above
expression for the weight tensor Eq. 17 can be rewritten as follows

M N

y, sgn{ E y7(Z- xjxi)r + w1}. (19)
1,m=1 j=1

W The above equation suggests an alternate implementation for higher order
memories that are trained using the outer product rule. This is shown
schematically in Fig. 5. The inner products between the input vector and

* .22
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all the stored vectors xn are formed first, then raised to the r-th power,
and the signal from the m-th unit is connected to the output through
interconnective weights y "'. If y' = x then the memory is autoassociative,
and in this case the output can be fed back to the input resulting in a system
whose stable states are programmed to be the vectors x . This becomes a

- direct extension of the Hopfield network[15,19,20] to the higher order case.

, Assuming that x xr' is one of the stored vectors, y, becomes

N

Y, sgn{Nt y -I , E~(xz) +-
.r ,' m n j=1

- sgn{N'yn + nj(f)} (20)

where the first term is the desired signal term, nL is a noise term, and the
*- thresholding weight is set to zero.

The expectation value of ni(x_) is zero if the bits that comprise the stored
binary input and output vectors are drawn randomly and independently
having equal probability of being +1 or -1. If this is the case then

(1 E(x' x') Z: t t ,, E(Z 4x') ~ m(21)

it'it'MM' MM'

where 6,j is the Kronecker delta function. The variance of nj is calculated
as follows:

E(n') E( Z -'7 X'7m .• Xn ... Xn
..m 7 m' n .7172 .j, 8182 . 8,

m' m' m' n Xn ... )
"81 182 " " 81 82 1,

E.. E mm .Xm Xm ... Xm
%.1 .72 ., Al 82 ,

m?6 n , j 2 ., 8-82 8,

*J 1.112 j*I, 81 S2 8jx~. (22)

In the above we used the facts that different stored vectors are uncorrelated
(i.e. for m 5 rn') and y2 = 1. Then, the variance becomes (M - 1)Q(N,r),
where Q(N, r) is the number of possible permutations such that

* 6612t2  it, 1 (23)

where the set of variables {i,..., Zr, t1, ,t} spans all the combinations

produced by the set of variables {jj,... ,Jr,si1... ISr The variance can

* .23
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be calculated exactly for the cases r=1,2 and 3 and it is (M - 1)N, (M -
1) (3N 2 - 2N) and (M- 1) (15N 3-30N 2 + 16N), respectively. For the general
case we will derive lower and upper bounds which for large N provide us
with a good estimate of the variance for any order r.

Proposition 4 The total number of permutations, Q(N,r), for which Eq.
23 holds, satisfies the following relationship:

P(N,r) ±2r)! + (2r)P(n,r - 1) (2r- 4)! < Q(N,r) <NL2 r ) !  (24)

where P(m,n) - - n)!.

Proof : The number of ways of making r pairs of 2r items is (2r - 1)(2r -
3) ... (3)(1) = (2r)!/2*r!. The items that we are concerned with are the
variables ij, tj and each of these variables can take one of N values. We can
only select the values of half these variables (N" possibilities) and for each of
these choises we can create r pairs. Hence the upperbound is N'(2r)!/2'r!.
This is an upper bound because we have overcounted for different pairings
of variables that have the same value.

The initial lower bound is derived if each pair has a different value from
all others, which eliminates the possibility of overcounting. The number of
possible ways to satisfy Eq. 23 with the variables in any two pairs not taking
the same values is P(N,r)(2r)!/2rr!. This is an underestimate because all
pairs that contain variables taking the same value should be counted once.
We can thus improve the lower bound by counting the number of ways these
degenerate pairings occur and adding them into the previous bound. For
example when two pairs out of r have the same values with (2r) choices,

there are (2)NP(N- 1, r - 2)(2r - 4)!/2r-(r - 2)! possible permutations
where (2r - 4)!/2r- 2 (r - 2)! is the number of ways of making r - 2 pairs of
2r - 4 items. Therefore, Q(N,r) is lower bounded by P(N,r)(2r)!/2rr! +
(2 )P(Nr- 1)(2r - 4)!/2r-2 (r - 2)!, since NP(N- 1,r-2) = P(N,r- 1).

We can get a very good approximation to the SNR using the approxi-
mations of M - 1 z M and Q(N,r) - Nr(2r)!/2rr! which are very nearly
true for the interesting case r << N:

NrSNR {MNr(2r)!/2"r!}1 /2
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- N2!12 (25)Mf (2r)!

For example, the linear memory, r = 1, has a SNR ,z (N/Af)1 /2 , the

quadratic memory, r 2, a SNR of Ni(3M)1 /2 and the cubic memory,

r 3, a SNR of (N 3 /15.M) 1 2 We can obtain an estimate for the capacity

of an r-th order memory by equating the signal to noise ratios of the linear

and r-th order memories and solving for Mr, the number of stored vectors
that will yield the equality. For r small compared to N we obtain

Mr Nr_ 1 2r!

M, (2r)!

• Comparing its value with the capacity M, of a linear memory we can obtain

the relationship between the capacities, that is, M/M = Ng'-2'r!/(2r)!.

For example M 2 of a quadratic memory is MIN/3 and M 3 of a cubic memory

is M 1 N 2/15.

The diagonal terms in a high order memory WO,l,...h, can be defined

as those of which all the indexes j are not different. We form the weight

tensor with zero diagonal as follows:

... - - "..m xx . .'z if j's are all different,""jj2 'j, y, )1 32 j (27)
-= 0 otherwise.

When the input is one of the stored vectors x and the weight tensor has
zero diagonal, the output y, becomes

ysg{, = Wl,.. j, X, n.. + W 0
* differentj

= sgn{P(N,r)y' + E y' XZ ... xX 1 X. ... x" + w S)I I: h j2 "' j, j I j2 .,

P," m~n differentj

where the first term is a signal term and the second a noise term as before.

The variance of the noise term is easily shown to be (M - 1)P(N, r)r! using
Eq. 21. Therefore, the SNR becomes

S.%
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which can be approximated as (N'/Mr!)1/2 for r << N.
Chen and his coworkers[3] introduced an energy function[15,21] for the

r-th order autoassociative memory with feedback and outer products as
follows:

M
E, =- < x_ , __ ,+I(30)

where < .,. > denotes an inner product of two vectors. The change in the

energy due to a change 6x in the state of the network was shown by Chen

et. al. to be decreasing for odd r.

A E,- Er (X + 6) - E (X)

- -(r + 1) xj W131 .2 ,7x,xj,, x, - R, (31)

where /

r - (= I < t,,z >,+'-'< _ , > . (32)

The first term in Eq. 31 is always nonpositive because of the specification of
the update rule: bxl 0 if j ... ,7 Wh1 ... jXXx. xj, > 0 and vice versa.
They showed that the second term is also nonpositive by showing that 14
is an increasing function of r for r odd and R, > 0.

For r even it is possible to prove that the autoassociative memory con-
verges only for asynchronous updating even though in simulations even or-

der autoassociative memories consistently converge as well. The fact that
the energy is not always decreasing when r is even may actually be helpful
for getting out of local minima and settling in the programmed stable state
which are global minima in a region of the energy surface. A descent proce-

dure that is always decreasing in energy cannot escape local minima since
there is no mechanism for climbing out of them. As an example, consider
a quadratic memory, i.e. r=2 (even), whose energy function is given by

-2 - Wijkxixk (33)
ijk

. AE 2 - -3 E W,txjxkx, - 3-W,,kxkbx,6x, - -W,,kbx,6x,5xk. (34)

ij jk ijk
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The first term is nonincreasing but the second and third terms can be
increasing. If the vector x is very close to one of the stored vectors n then

-the first term becomes dominant and the energy will be very likely to be
nonoincreasing causing the system to settle at x = x. If x is not close to
any of the stored vectors, then all three terms in the above equations are
on the average comparable to each other and since two of them are not
nondecreasing the energy function may be increasing and it is possible to
escape from local minima.

2.4 Optical implementations of quadratic associative
memories

The outer product quadratic associative memories described in the previous
section require three basic components for their implementation: intercon-
nective weights, a square-law device, and a threshold nonlinearity. In this
section, we present a variety of optical implementations using either planar
or volume holograms to provide the interconnection pathways and optical
or electro-optical devices to provide the required nonlinearities.

Since holographic techniques are used to implement the required inter-
connections, we will first briefly discuss holography[22] and in particular
the distinction between the use of planar versus volume holograms. The
holographic process is shown schematically in Fig. 6. In the recording step
(Fig. 6a) the interference between the reference plane wave that is created
by collimating the light from a point source using a lens and the wave orig-
inating from the object "A" is recorded on a planar light sensitive medium

such as a photographic plate. When the developed plate is illuminated with
the same reference wave, the field that is diffracted by the recorded inter-

* ference pattern gives a virtual image of the original object which can be
converted to a real image with a lens. The reconstruction of the hologram
is thus equivalent to interconnecting the single point from which the plane
wave reference is derived to all the points that comprise the reconstucted
image. The weight of each interconnection is specified by the interference

S.pattern stored in the hologram.
Volume holograms are prepared and used in the same manner except

that whereas a planar hologram records the interference pattern as a two
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dimensional pattern on a plane, a volume hologram records the interference
pattern throughout the volume of a three dimensional medium. The dis-
parity in the dimensionalities of the two storage formats results in marked
differences in the capabilities of the two processes. This difference is ex-
plained with the aid of Figs. 7a and 7b where the reconstruction of both

411: a planar and a volume hologram are shown. Each hologram is prepared
to store the two images "A" and "0" by double exposure with each im-
age being associated with a reference plane wave that is incident on the
hologram at a different angle. Each reference plane wave is generated by
a separate point source and thus the reconstuction of a hologram with the

. two reference waves is equivalent to interconnecting multiple input points

to all the points on the plane of the reconstucted image. In the case of the
-- planar hologram, however, when either one of the reference waves is inci-

dent both images are reconstructed. This implies that we cannot in this
case independently specify how each of the input points is connected to the
output. In contrast, because of the interaction of the fields in the third
dimension[23] the volume hologram is able to resolve the differences in the
angle of incidence of the reference beam and upon reconstruction when the
reference for "A" illuminates the medium, only "A" is reconstructed and
similarly for the second pattern. When both input points are on simulta-
neously then each is interconnected to the output independently according
to the way it was specified by the recording of the two holograms. Thus
volume holograms provide more flexibility for implementing arbitrary in-
terconnections which translates to efficient three dimensional storage of the
interconnective weights needed to specify the quadratic memory.

Another way in which we can draw the distinction between planar and
* volume holograms is in terms of the degrees of freedom. The implemen-

tation of a quadratic memory whose input word size is N bits requires
approximately N' interconnections for the three dimensional interconnec-
tion tensor. The number of degrees of freedom of the planar hologram of
area A is upper bounded by A/ 2 while that of a volume hologram is limited

O. to '/6, where V is the volume of the crystal and 6 is the minimum detail
that can be recorded in any one dimension 24,25,26]. Equating the degrees
of freedom that are required to do the job to those that are available, the
crystal volume is determined to be at least V N3 3 whereas a planar
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hologram to do the same job would require a hologram of area A = N'P.
For comparison, a network with N = 10' can in principle be implemented
using a cubic crystal with the length of each side being l = Nb=1 cm, but
a square planar hologram is required to have the length of each side be at
least 1 = N 3 1=0.33 m at 6 = 10 pim. Thus, the volume hologram offers
a more compact means of implementing large memory systems.

2.4.1 Volume hologram systems

There are several schemes for fully utilizing the interconnective capability
of volume holograms[25,26]. For the implementation of quadratic memo-
ries we use volume holograms to fully interconnect a 2-D pattern to a 1-D

* pattern (N 2 F-+ N mappings) and also the reverse (N '-* N 2). The geom-

etry for recording the weights for both cases is shown in Fig. 8a and the
reconstruction geometries are illustrated in Figs. 8b and 8c. The circles

*. *"represent the resolvable spots at the various planes in the system. The
waves emanating from each point at the input planes are transformed into
plane waves by the Fourier transform lenses L, and L 2 and interfere within
the crystal, creating volume gratings.

The weights are loaded into the volume hologram with multiple holo-
graphic exposures in the system of Fig. 8a. In the following subsections
we will describe several specific procedures for doing so. For the N '-. N2

mapping (Fig. 8b) in reading out the stored information, a single source in
the input array recontructs one of the N 2-D image consisting of N2 pixels

that it is associated with. The rest of the images, which belong to the
other input points, are not read out because of the angular discrimination

of volume holograms. The counterpart to this scheme, shown in Fig. 8c,
* which implements an arbitrary N 2 - N mapping. This setup is basically

the same as that of Fig. 8b except that the roles of the input planes have
been interchanged or equivalently the direction in which light propagates
has been reversed.

O 2.4.1a N 2 - N schemes

First, we consider a method by which the full three dimensional intercon-
:' nection tensor is implemented directly with a volume hologram. Recall that

if the weight tensor is trained using the sum of outer products then it is
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given by
M

Wzj yXMXM (35)
w~~~i, ~ = 1,x ,,(s

where x' represents the m-th input memory vector and ym represents the
associated output vector. Such a memory is accessed by first creating an

outer product of the input vector and multiplying it with wijk as follows:

N N

y, = sgn{E E Wkxxk}. (36)
"=1 k=1

The volume hologram is prepared using the set-up in Fig. 8a. First, the
outer product matrix of the m-th memory input vector, x'x', is formed on
an electronically addressed spatial light modulator (SLM)[27]. Another one

.. dimensional SLM whose transmittance represents the m-th output vector
y-:' is placed in the other input plane, and the two SLMs are illuminated
by coherent light. The transmitted waves are then Fourier transformed
by lenses L, and L 2 to interfere within the crystal volume to create index
gratings. This procedure is repeated for all M associated input-output pairs
so that a sum of M holograms is created in the crystal. For the quadratic

.- outer product memory whose capacity is fully expended, this involves on
the order of N 2/ log N exposures.

We will now describe another method for recording the weight vector in
the volume hologram that involves fewer exposures and can also be used not
only for the outer product scheme but for recording any given weight tensor
as well. The same basic recording architecture of Fig. 8a is used in this case
also. In the first exposure, the top light source in the linear array is turned
on while the SLM is programmed with the matrix Wlik, where wjk is the

*@ interconnection tensor. When the SLM is illuminated with light coherent
.-d- with that of the point source, the crystal records the mutual interference

pattern as a hologram of the image w1,j with a reference beam that is the
-' . plane wave generated from the top light source. In the next step, the second

source is turned on while the SLM is programmed with the matrix W22 &.

In this manner the connectivity for all the points in the linear array at the
input are sequentially specified and the memory training is completed when
all N exposures have been made. The disadvantage of this method relative
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to the outer product recording is the need to precalculate electronically
the weight tensor but it has the advantage of fewer exposures (N versus

" "N2/ log N) and greater flexibility in choosing the training method.

The architecture in Fig. 8c is used to access the data stored in the
"" hologram by either one of the recording methods described above. The

- electronically addressed 2-D SLM is placed at the input plane and it is pro-

grammed with the outer product matrix xkxj of the input vector. The light

from the N 2 input points is interconnected with the N output points via

the recorded wI. interconnect kernel. A linear array of N photodetectors
is positioned to sample the output points.

It is important to restate at this juncture that this particular implemen-

- tation achieves the quadratic interconnections by first transforming the N

* input features (i.e., the N elements of the input vector xy) into a set of

N 2 features via the outer product operation. The result is that although
- ." the interconnections are quadratic with respect to the N original feature

Z. points, they are linear with respect to the N 2 transformed features. This
allows the application of error driven learning algorithms for linear net-

works such as the Adahine[28] where the interconnections are developed by

an iterative training process[29]. The operation of such a learning scheme
is illustrated in Fig. 9 which is the same basic architecture as Fig. 8c with
feedback from the output back into one of the input ports. Each itera-

tion consists of a reading and a writing phase. During the reading phase,

the interconnections present in the crystal are interrogated with a partic-
ular item to be memorized by illuminating the 2-D SLM which contains

the outer product matrix x"x " t and the output is formed on the detec-

tor array. In the subsequent writing phase, the error pattern generated by

subtracting the actual output from the desired output pattern is loaded

into the 1-D SLM and both SLM's (the 2-D SLM still contains Zranx-) are

illuminated with coherent light, forming a set of gratings in addition to
.Ne. the previously recorded gratings. The procedure is iteratively repeated for

%<, each item to be memorized until the output error is sufficiently small. This

algorithm is a descent procedure designed to minimize the mean squared
cotf=1 M M N rnm M

cost, F [,= ) w xx Yj 2 by iteratively updating the

interconnection values.

2.4.1b N - N 2 schemes
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The N -+ N 2 mapping capability of the volume hologram which is the
inverse of that required for the architectures just described can be used
also to implement quadratic memories and can be generalized for higher
order memories. The basic idea behind this scheme is illustrated in Fig. 10
which shows the interconnection between the i-th and j-th neurons whose

-. weight wij is a linear combination of all of the inputs and is described by

N

- E WiAXk. (37)A:=
k.=1

The overall result is, of course, recognized to be the equation describing the
quadratic memory, but the notion of an input dependent weight suggests
the implementation shown in Fig. 11. The system is basically an optical

* vector matrix multiplier[30] in which the matrix is created on an optically
addressed SLM by multiplying the input vector with the three dimensional
tensor stored in a volume hologram. The input vector is represented by a
one dimensional array of light sources. The portion of the system on the
left side of the SLM is the vector matrix multiplier and it works as follows.
Light from each input point is imaged horizontally but spread out vertically
so that each source illuminates a narrow, vertical area on the 2-D SLM. The

* .' reflectance of the SLM corresponds to the matrix of weights w~i in Eq. 37.

The reflected light from the SLM travels back towards the input and a
portion of it is reflected by a beam splitter and then imaged horizontally

but focused vertically onto a 1-D output detector array. The output from
the detector array represents the matrix vector product between the input
vector and the matrix represented by the 2-D reflectance of the SLM. The

matrix of weights, in this case, is not fixed but rather computed from the
" input via a volume hologram by exposing the righthand side of the SLM

as shown in the figure. The optical system to the right of the 2-D SLM
- . in Fig. 11 is the same as the N -+ N' system of Fig. 8b. The volume

hologram which has been prepared to perform the appropriate dimension
increasing operation (N N'), transforms the light distribution given
by its one dimensional array of sources into the input dependent matrix
of weights given by Eq. 37. This system is functionally equivalent to the
previous system except it does not require the use of a 2-D electronically
addressed input SLM. The 1-D devices utilized in this architecture are
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easier and faster to use in practice. Instead a 2-D optically addressed SLM
is needed which in practice is simpler to use compared to electonically
addressed devices (requires less electronics), typically has more pixels, and
potentially much higher speed. A disadvantage of this method however is
that it does not lend itself for the direct implementation of the simple outer
product training method without the use of an electronically addressed 2-D
SLM.

The N - N' mapping technique can be used in conjunction with its
inverse, the N 2 

h-' N mapping, to implement the quadratic outer prod-
uct memory using two volume holograms, a 1-D electronically addressed
SLM, and an optically addressed 2-D SLM. Shown in Fig. 12 is a schematic
diagram of such a system. The first hologram is prepared with the mul-

* tiple exposure scheme discussed earlier (Fig. 8a) where for each exposure,
a memory vector in the one dimensional input array and one point in the

N. two dimensional (v'M x v/-) input training array are turned on simulta-
neously. The second hologram is prepared by a similar procedure except
that the associated output vectors are recorded in correspondence to each
point in the two dimensional training plane. After the holograms are thus
prepared, an input vector is loaded into the one dimensional input array
and the correlations between it and the M memory vectors are displayed
in the output plane[31,32,33]. An optically addressed SLM can be used
to produce an amplitude distribution which is the square of the incident
correlation amplitudes. The processed light then illuminates the second
hologram which serves as an M '-* N interconnection, each correlation
peak in the SLM plane reading out its corresponding memory vector and
forming a weighted sum of the stored memories on the one dimensional out-
put detector array. This is a direct optical implementation of the system

-jJ shown in block diagram form in Fig. 5 with the 2-D SLM performing the
square law nonlinearity at the middle plane and the two volume holograms
providing the interconnections to the input and output.

* 2.4.2 Planar hologram systems

While not having the extra dimension to directly implement the three di-
niensional interconnection tensor for general quadratic memories, planar

I
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- holograms can nevertheless implement the outer product quadratic mem-
ory in a way similar to the one used in the system just described. The
planar holographic system is shown in Fig. 13. Here, the information is
stored in the two multichannel 1-D Fourier transform (FT) holograms, the
first of which contains the 1-D FT's of the M memory input vectors and
the other, the FT's of the associated output vectors 10 ]. The first part of

the system is a multichannel correlator which correlates the input against
each of the Ml memory vectors. At the correlation plane, the M correlation
functions stacked up vertically are sampled at x = 0 with a slit to obtain the
required inner products which are then squared by the SLM. Each resulting

"-. point source of light is then collimated horizontally and imaged vertically
onto the second hologram to illuminate that portion which contains the

* corresponding output vector. The final stage computes the FT of the light
distribution just following the second hologram to produce the weighted
sum of the vectors at the output detector array. It is interesting to note
that if the SLM is removed from the correlation plane, this system reduces
to the linear outer product memory.

Notice that in this system if the input pattern shifts horizontally then
the correlation peak also shifts in the correlation plane and it is blocked by
the slit that is placed there. Therefore shifted versions of the input vector

are not recognized, as expected. Shift invariance where the shifted versions
of the memory vectors are recognized and their associated outputs, shifted
by the same amount as the input, are retrieved can be built into this sytem
by simply lengthening the input SLM and the output detector array to
accomodate the shifts and removing the slit in the correlation plane. The
resulting system treats each of the 2N - 1 shifted versions of the memory
vectors as a new memory and as a result, the increased capacity of the
quadratic memory over the linear one (by a factor of N) is expended to
provide invariant operation.
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Figure Captions

Fig. 1 a. Discriminant function. b. Associative memory consructed as an
array of discriminant functions.

Fig. 2 Higher order associative memory.

Fig. 3 a. The angle between linearly and quadratically expanded vectors
as a function of the hamming distance at the input. b. The angle

between linearly and cubically expanded vectors as a function of the
hamming distance at the input.

Fig. 4 The angle between expanded vectors for selected orders.

Fig. 5 Outer product, r-th order associative memory.

Fig. 6 Holographic recording and reconstruction.

Fig. 7 Holographic interconnections using a.planar versus b. volume holo-
grams.

Fig. 8 Optical interconnections using volume holograms, a. Recording
apparatus. b. N '-* N' mapping. c. N2 

'-- N mapping.

Fig. 9 Optical system for performing error driven learning in a higher
order memory.

Fig. 10 Quadratic mappings implemented as nonnlinear interconnections.

Fig. 11 Optical architecture for the implementation of the nonlinear in-
terconnections of Fig. 10.

Fig. 12 Optical higher order associative memory implemented with vol-

N ume holograms.

0 Fig. 13 Optical implementation of the outer product higher order memory.
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3 Connectivity versus Entropy

How does the connectivity of a neural network (number of synapses per
% neuron) relate to the complexity of the problems it can handle (measured

by the entropy)? Switching theory would suggest no relation at all, since
-.. all Boolean functions can be implemented using a circuit with very low

connectivity (e.g., using two-input NAND gates). However, for a network
that learns a problem from examples using a local learning rule, we prove
that the entropy of the problem becomes a lower bound for the connectivity
of the network.

3.1 Introduction

0:: The most distinguishing feature of neural networks is their ability to spon-
taneously learn the desired function from 'training' samples, i.e., their abil-
ity to program themselves. Clearly, a given neural network cannot just
learn any function, there must be some restrictions on which networks can

* learn which functions. One obvious restriction, which is independent of the
learning aspect, is that the network must be big enough to accommodate
the circuit complexity of the function it will eventually simulate. Are there
restrictions that arise merely from the fact that the network is expected to

learn the function, rather than being purposely designed for the function?
This paper reports a restriction of this kind.

The result imposes a lower bound on the connectivity of the network
(number of synapses per neuron). This lower bound can only be a con-
sequence of the learning aspect, since switching theory provides purposely

designed circuits of low connectivity (e.g., using only two-input NAND
* gates) capable of implementing any Boolean function[1,2]. It also follows

that the learning mechanism must be restricted for this lower bound to
hold; a powerful mechanism can be designed that will find one of the low-

connectivity circuits (perhaps by exhaustive search), and hence the lower
bound on connectivity cannot hold in general. Indeed, we restrict the

0. learning mechanism to be local; when a training sample is loaded into the
network, each neuron has access only to those bits carried by itself and
the neurons it is directly connected to. This is a strong assumption that
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excludes sophisticated learning mechanisms used in neural-network models,
but may be more plausible from a biological point of view.

The lower bound on the connectivity of the network is given in terms of
the entropy of the environment that provides the training samples. Entropy
is a quantitative measure of the disorder or randomness in an environment
or, equivalently, the amount of information needed to specify the environ-
ment. There are many different ways to define entropy, and many technical
variations of this concept[3]. In the next section, we shall introduce the for-
mal definitions and results, but we start here with an informal exposition
of the ideas involved.

The environment in our model produces patterns represented by N bits
X -Xl'..X N (pixels in the picture of a visual scene if you will). Only h

0 different patterns can be generated by a given environment, where h < 2N
(the entropy is essentially log 2 h). No knowledge is assumed about which
patterns the environment is likely to generate, only that there are h of them.
In the learning process, a huge number of sample patterns are generated
at random from the environment and input to the network, one bit per
neuron. The network uses this information to set its internal parameters
and gradually tune itself to this particular environment. Because of the
network architecture, each neuron knows only its own bit and (at best) the
bits of the neurons it is directly connected to by a synapse. Hence, the
learning rules are local: a neuron does not have the benefit of the entire
global pattern that is being learned.

After the learning process has taken place, each neuron is ready to per-
form a function defined by what it has learned. The collective interaction

of the functions of the neurons is what defines the overall function of the

network. The main result of this paper is that (roughly speaking) if the
• connectivity of the network is less than the entropy of the environment,
-' the network cannot learn about the environment. The idea of the proof is
- to show that if the connectivity is small, the final function of each neuron

is independent of the environment, and hence to conclude that the over-
all network has accumulated no information about the environment it is

supposed to learn about.

54

e -



3.2 Formal result

A neural network is an undirected graph (the vertices are the neurons and
the edges are the synapses). Label the neurons 1,...- , N and define K&, C

{1,. N N} to be the set of neurons connected by a synapse to neuron n,
together with neuron n itself. An environment is a subset e C {O, IN (each
x G e is a sample from the environment). During learning, xi, -. -,'XN (the
bits of x) are loaded into the neurons 1,., N, respectively. Consider an
arbitrary neuron n and relabel everything to make Kn become {1,.. - , K).
Thus the neuron sees the first K coordinates of each x.

Since our result is asymptotic in N, we will specify K as a function of N;
K = aN where a =a(N) satifies liMN-w a(N) = a, (0 < a, < 1). Since
the result is also statistical, we will consider the ensemble of environments

6 =6 () feC O, }NI JeI = h

%ON

where h = 2 N and /3 = O(N) satifies limN-, 0 /3(N) = 3 (0 < '3" < 1).
The probability distribution on E is uniform; any environment e E E is as
likely to occur as any other.

The neuron sees only the first Kcoordinates of each xgenerated by the

Z environment e. For each e, we define the function n { 0, I}K - {O, 1, 2, -
where

n(al...aK) =IJ{XcelIxA=ak fork= 1,...,K}I

and the normalized version

v~ai.. a) =n(al ... aK)
h

The function v describes the relative frequency of occurrence for each of
the 2 K binary vectors X1 ... K as X = N runs through all h vectors
in e. In other words, v specifies the projection of e as seen by the neuron.
Clearly, v(a) > 0 for all a E {0, i}K and aE e{eK VWa) 1

Corresponding to two environments el and C2, we will have two functions

£' and V2 If v, is not distinguishable from 2, the neuron cannot tell the
difference between el and e2. The distinguishability between v 1 , and 2 can
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be measured by
1

d(v,,L/ 2)= Z Li(a)-V 2 (a)l
2 &E{0,1K

The range of d(vi, L2) is 0 < d(vj, V2) _ 1, where '0' corresponds to complete
indistinguishability while '1' corresponds to maximum distinguishability.
We are now in a position to state the main result.

Let el and e2 be independently selected environments from E according
to the uniform probability distribution. d( 1 , V2 ) is now a random variable,
and we are interested in the expected value E(d(v,, u2)). The case where
"E(d(i, v2)) = 0 corresponds to the neuron getting no information about

the environment, while the case where E(d(v, ,V 2 )) = 1 corresponds to the
• neuron getting maximum information. The theorem predicts, in the limit,

one of these extremes depending on how the connectivity (a,) compares to
the entropy (/3o).

Theorem.
1. If ao > f3othen limy.,, E (d(.,, V2)) = 1.

2. If ao </3o then limNE (d(v, V2 )) =0.

The proof is given in the appendix, but the idea is easy to illustrate
informally. Suppose h = 2 K+1O (corresponding to part 2 of the theorem).

For most environments e E E, the first K bits of x E e go through all 2K

possible values approximately 2"° times each as x goes through all h possible
values once. Therefore, the patterns seen by the neuron are drawn from the
fixed ensemble of all binary vectors of length K with essentially uniform
probability distribution, i.e., v is the same for most environments. This

means that, statistically, the neuron will end up doing the same function
regardless of the environment at hand.

What about the opposite case, where h = 2 K - ° (corresponding to part
1 of the theorem)? Now, with only 2 K - 0 patterns available from the en-
vironment, the first K bits of x can assume at most 2K-10 values out of
the possible 2K values a binary vector of length K can assume in princi-

* pIe. Furthermore, which values can be assumed depends on the particular
environment at hand, i.e., v does depend on the environment. Therefore,
although the neuron still does not have the global picture, the information

it has says something about the environment.
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APPENDIX
In this appendix we prove the main theorem. We start by discussing

some basic properties about the ensemble of environments 6. Since the
probability distribution on E is uniform and since IS (27), we have

Pr(e)= (2N)1

which is equivalent to generating e by choosing h elements x G {0, 1}N with

uniform probability (without replacement). It follows that

h
Pr(x E e -

while for x, X2,

h h-1
Pr(xi E e, x2 E e) - x TN-

and so on.
The functions n and v are defined on K-bit vectors. The statistics of

. n(a) (a random variable for fixed a) is independent of a

'- Pr(n(ai) = m) = Pr(n(a 2) = m)

which follows from the symmetry with respect to each bit of a. The same

holds for the statistics of v(a). The expected value E(n(a)) = h2K (h
objects going into 2 K cells), hence E(v(a)) 2 K . We now restate and
prove the theorem.

II Theorem.

1. If a > , then limN-.,o E (d(vl,v 2 )) =1.

2. If a, < 3o, then limN-o E (d(vt',v 2)) = 0.

Proof.

We expand E (d(tvl, V 2 )) as follows

E =dvi V2) 2 -v~)V(
aE{O,1}A K
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-~ ZE(1n1(a)-n 2(a)I)

- E(In - fl21)

where nj and n2 denote n 1 (0 .. .0) and n2 (0 .. .0), respectively, and the
last step follows from the fact that the statistics of nl(a) and n 2(a) is
independent of a. Therefore, to prove the theorem, we evaluate E(In, -n 2 1)
for large N.
1. Assume cf0 > 0,. Let n Cenote n(0. .. .0), and consider Pr(n =0). For

% ~ n to be zero, all 2 ' -K strings x of N bits starting with K 0's must not be
in the environment e. Hence

Pr(n =0) =(1 - ~)(1 - N ).(1- h

where the first term is the probability that 0 ... 00 V e, the second term is

the probability that 0 ... 01 iZ e given that 0 - - 00 ij e, and so on.

h 2 N-K

(1 2 N- N-K)

(i- h2 N(l -2 K-)2-

* (1 - 2h2 N)2N-K

* 1 - 2 h2 N 2 N-K

-12h2K

Hence, Pr(n1  0) = Pr(n2 = 0) =Pr(n =0) > 1 - 2h2-K However,
*E(n 1 ) E(n2) h2K Therefore,

h h
E(Ini - n 2 l) = ZZPr(ni = t,n 2 = )Ii -ii

h h
* - Z Pr(n, i) Pr(n2  J)[it J1

1=01j=0

h

E Pr(nj 0) Pr(n2 =j)j

0=
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h

+ Pr(n= i) Pr(n 2  0)i

i=0

which follows by throwing away all the terms where neither i nor j is zero
(the term where both i an j are zero appears twice for convenience, but
this term is zero anyway).

= Pr(n = O)E(n 2) + Pr(n 2 = O)E(ni)

> 2(1 - 2h2-K)h 2
-K

Substituting this estimate in the expression for E(d(vi, V 2 )), we get

E E(d (viV2)) = 2E(In, - n2I)i= 2h

> 2 x 2(1 - 2h 2 -K)h2
- K

I, - 2h2-
" ' = 1 -2 h2 -K

1-2 x 2 ("-cz)N

Since a, > , by assumption, this lower bound goes to 1 as N goes to
infinity. Since 1 is also an upper bound for d(vL,V 2) (and hence an upper
bound for the expected value E(d(vl, V2))), limN., E(d(v,v 2)) must be
1.

2. Assume a, <i3o. Consider

E(In- n2) - E (I(n, - h2
-

K) - (n2 - h 2 -K)i)

" E(Jn, - h2-KI + in 2 - h2-K )

- E(In, - h2-Ki) + E(n 2 - h2-i)

* - 2E(In - h2-KI)
To evaluate E(In - h2-KI), we estimate the variance of n and use the

fact that E(In- h2- ) < var(n) (recall that h2-K = E(n)). Since

var(n) E(n- (E(n) we need an estimate for E(n We write n
* ZaE{ .1}KI- 6n, where

6". 1 1, if0...Oa e;
6.'.-° 0, otherwise.

€It,
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In this notation, E(n 2 ) can be written as

E(n') E ( 1: E bNKb
(.E{0,1)N-K bE{O,1}N-K

aE{,1jN-K bE{0,1)N-K

For the 'diagonal' terms (a = b),

E (b.b.) P Pr (6 1

. h2- N

There are 2 N - K such diagonal terms, hence a total contribution of 2 N-K X

- h2-y . h2K to the sum. For the 'off-diagonal' terms (a 0 b),
O

E(ba b) = Pr(ba = 1,b = 1)
- = Pr(b, = 1) Pr(b = 1(6k 1)

h h - 1

There are 2 N-K(2 N - K - 1) such off-diagonal terms, hence a total contribu-
hK h-1X -K)2 2 Ntion of 2 NK(2 NK - 1) x 2 (h2) 2W- to the sum. Putting the

contributions from the diagonal and off-diagonal terms together, we get

E(n 2 ) <h2-K +(hK) 2 N
(h2 2N--

var(n) E E(n) - (E (n))
2N

-K + -hK)2 21 - h-K)2
< h2- + (h 2 K) 2  h2w'.-2- - 1

- h2- + (h2- ) -
.'.'z.2 -

,.','.. = h2-  1 + 2- ---

< 2h2- K

The last step follows since h2-K is much smaller than 2 N 1. Therefore,

E(In - h2- ) var(n) < (2h2-K) . Substituting this estimate in the
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expression for E(d(v',V 2 )), we get

2h

2 K< - x 2E(n - h2- KI)

v 2 X 22(-)i

Since a, < i3o by assumption, this upper bound goes to 0 as N goes to
infinity. Since 0 is also a lower bound for d(vl, V 2) (and hence a lower
bound for the expected value E(d(i'i, V 2 ))), limN- . E(d(v,/ 2)) must be

0.
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4 Adaptive Optical Networks Using Photore-
fractive Crystals

4.1 Introduction

Learning is the most distinctive feature of a neural computer and in many
respects it is this aspect that gives neural computation an advantage over
alternative computational strategies. A neural computer is trained to pro-
duce the appropriate response to a class of inputs by being presented with a
sufficient number of examples during the learning phase. The presentation
of these examples causes the strength of the connections between neurons
that comprise the network to be modified according to the specifics of the
learning algorithm. A successful learning procedure will result in a trained
network that responds correctly when it is presented with the examples it
has seen previously and also other inputs that are in some sense similar to
the known patterns. When we consider a physical realization of a neural
network model, we have two options in incorporating learning capability.
The first is to build a network with fixed but initially programmable con-
nections. An auxiliary, conventional computer can then be used to "learn"
the correct values of the connection strengths and once learning has been
completed the network can be programmed by the computer. While this
approach may be reasonable for some applications, a system with continu-
ously modifiable connections presents a much more powerful alternative.

In this paper we consider the optical implementation of learning net-
works using volume holographic interconnections in photorefractive crys-
tals. The use of volume holograms permits the storage of a very large
number of interconnections per unit volume [1,2,3,4] whereas the use of

4 photorefractive crystals permits the dynamic modification of these connec-
" tions, thus allowing the implementation of learning algorithms [5,6,7,8,9].

We first briefly review the major types of learning algorithms that are being
used in neural network models. We then estimate the maximum number
of holographic gratings that can simultaneously exist in a photorefractive
crystal. Since in an optical implementation each grating corresponds to a

" separate interconnection between two neurons, this estimate gives us the
density of connections that are achievable with volume holograms. The
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next topic that we address is how the modulation depth of each grating (or
equivalently the strength of each connection) can be controlled through the
implementation of learning algorithms. Two related issues are investigated:

21 the optical architectures which implement different learning algorithms and
the reconciliation of physical mechanisms that are involved in the recording
of holograms in photorefractive crystals with the dynamics of the learning
procedures in neural networks.

4.2 Learning algorithms

. For the purposes of this discussion it is convenient to separate the wide
range of learning algorithms that have been discussed in the literature into

-" three categories: prescribed learning, error driven learning and self organi-
-. zation. We will draw the distinction among these with the aid of Fig. 1,

where a general network is drawn with the vector x(k) as its input and y(k)
the output at the k" iteration (or time interval). The vector z(k) is used
to represent the activity of the internal units and wij(k) is the connection
strength between the &ih and the jth unit. Let x(' ), m = 1...M, be a set
of specified input vectors and let y(m) be the responses which the network
must produce for each of these input vectors.

A prescribed learning algorithm calculates the strength of each weight

simply as a function of the vectors x(' ) and y('):

w i, = fi,(__) ) m = ...M (1)

.PIN This type of procedure is relatively simple ("easy learning"). It is perhaps
the most sensible approach in a single layer network. The widely used outer
product algorithm [10,111 is an example of this type of learning algorithm,.- as are some schemes which utilize the pseudoinverse [10,12,13]. Despite

its simplicity, prescribed learning is limited in several important respects.
First, while prescribed learning is well understood for single layer systems,
the existing algorithms for two layers are largely localized representations;

S.each input x(' ) activates a single internal neuron [14,15,16]. Moreover, the
entire learning procedure usually has to be completed a priori. This last
limitation is not encountered in the simplest form of prescribed learning,
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the outer product rule:
M

Wj X () (2)

In this case new memories may be programmed by simply adding the outer

products of new samples to the weight matrix. Note that once the intercon-
nection matrix has been determined by a prescribed learning algorithm, it
may be expressed in the form of a sum of at most N outer products, where
N is the total number of neurons in each layer. Since volume holograms
record interconnections matrices represented by sums of outer products
in a very natural way, matrices which can be expressed in this form are
particularly simple to implement in optics [17,18,19,20).

Error driven learning is distinguished by the fact that the output of the
0( system, y(k), is monitored and compared to the desired response y(-). An

incremental change is then made to the interconnection weights to reduce

the error.
Awi(k) = f[j_(m),w,o(k),y(m)] (3)

The change Awj is calculated from the vectors x_(m) and y(') and the cur-
rent setting of the weight matrix wo(k) (from which the state of the entire
network can be calculated). The perceptron [21] and adaline [221 algorithms
are examples of error driven learning for single layer networks. Interest in
such learning algorithms has been renewed recently by the development of

procedures suitable for multi-layered networks [23,24,25]. Error driven al-
" gorithms ("hard learning") are more difficult to implement than prescribed

learning since they require a large number of iterations before errors can
be reduced to sufficiently low levels. In multilayered systems, however,

-.- this type of learning can provide an effective mechanism for matching the

available resources (connections and neurons) to the requirements of the
problem. In optical realizations error driven algorithms are more difficultto implement than prescribed approaches due to the need for dynamically

-, modifiable interconnections and the incorporation of an optical system that
monitors the performance and causes the necessary changes in the weights

.-. [26:. While this problem could be avoided by performing learning off line
- in computer simulations and recording the optimized interconnection ma-

trix as in prescribed learning, this approach has the disadvantage that once
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again the matrix is fixed a priori, thus preventing the network from being
adaptive. In subsequent sections we will consider a relatively simple form
of Eqn. (3) in which Au,,j(k) depends only on locally available information,
i.e. z, in one layer and z in an adjacent layer

Aw2j(k) fj z{w,8(k),y(m),x(m}zlw,(k)y(x(m)1 (4)

The perceptron and the backwards error propagation algorithms both fall in
this subcategory if we allow the neuronal activity z, to include error signals,
i.e. if each neuron has distinct signal and error outputs which are separated
temporally or spatially. An example of such a neuron implemented in optics
is given below in conjunction with an optical back error propagation system.

In the case of self organizing learning algorithms we require not that
the specified inputs produce a particular response but rather that they
satisfy a general restriction, often imposed by the structure of the network
itself. Since there is no a priori expected response, the learning rule fo- self
organizing systems is simply

A Awi (k) fA[(-), w,,(k) (5)

This type of learning procedure can be useful, for instance, at intermediate
levels of a network where the purpose is not to elicit an external response
but rather to generate appropriate internal representations of the informa-
tion that is presented as input to the network. There is a broad range of self
organizing algorithms, the simplest of which is probably lateral inhibition
to enforce grandmother cell representations [10,271. The objective of the

- .- learning procedure is to have each distinct pattern in an input set of neurons
activate a single neuron in a second set. In the architecture shown in Fig. 2
this is accomplished via inhibitory connections between the neurons in the
second set. Once a particular neuron in the second layer is partially turned
on for a specific pattern it prevents the connections to the other neurons
in the second set from assuming values that will result in activity at more
than one neuron. The details of the dynamics of such procedures can be

_• quite complex (e.g. [281), as can corresponding optical implementations.
An advantageous feature of optics in connection with self organization is
that global training signals, such as fixed lateral inhibition between all the
neurons in a given layer, can easily be broadcast with optical beams.
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4.3 Interconnection capabilities of volume holograms

The basic architecture for optical implementation of a neural computer is
shown in Fig. 3. The figure presents a single stage of what may be a mul-
tilavered system. The nonlinear processing elements (i.e. the "neurons")
are arranged in planes. We have included a "training plane" for reasons
which will become clear below. Neurons in one plane are interconnected
with the neurons in the same or other planes via the third dimension. The
strength of the interconnections is determined by the information which is
holographically stored in light sensitive media placed in the space separat-
ing the neural planes. Volume, rather than "thin", holograms are specified
in Fig. 3 due to the much greater storage capacity of a volume holograms
and the availability of excellent real time volume media. Photorefractive

*O crystals are particularly attractive as holographic media in this application
because it is possible to record information in these crystals in real time
at very high density without degrading the photorefractive sensitivity. In
this section we discuss the factors that determine the maximum number of
connections that can be specified by a photorefractive crystal with a given
set of physical characteristics. There are three distinct factors that need
to be considered: geometric limitations arising from the basic principles of

-. volume holography, limitations rising from the physics of photorefractive

recording, and limitations due to the learning algorithms.
The Fourier lenses in Fig. 3 transform the spatial position of each neuron

into a spatial frequency associated with light emitted by or incident on that
neuron. An interconnection between the jih neuron in the input plane and
the jth neuron in the output plane is formed by interfering light emitted
by the input neuron with light emitted by the jth neuron in the training

* plane. The image of the jth training neuron lies at the position of the Pih

neuron in the output plane. The interference of the training signal and the
- input creates a grating in the recording medium of the form

AX" AiA~e  (6)

. where A, and A, are the amplitudes of the fields emitted by the ih and
j.h neurons, respectively. /f,, is equal to k, - kj where /c, and /- are the
spatial frequencies at which the corresponding amplitudes propagate in the
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volume medium. This grating diffracts an input beam at spatial frequency
k,,, into an output beam at spatial frequency k/ if these two beams satisfy
the Bragg constraint that

This constraint is obviously satisfied if k= ki and = k,. In general this
solution is not unique. However, Psaltis et al. [2,3] have shown that by
placing the neurons on the input and output planes on appropriate fractal
grids of dimension it is possible to insure that only the ith input neuron
and the j"h output neuron may be coupled by a grating with wavevector
Kj. In this case, recording a hologram between light from the jih input neu-
ron and the jth training neuron increases the connection strength between
the ith input and the jth output without directly affecting the connections

* between other neurons. If instead of one neuron, patterns of neurons are
-- active on the fractal grids of the input and training planes then the holo-

gram recorded in the volume, i.e. Eqn. (6) summed over all active pairs
S.: of neurons, is the outer product of the pattern on the input plane and the

pattern on the training plane. Exposing the hologram with a series of M
pattern yields the sum of outer products described by Eqn. (2). Note that
the architecture shown in Fig. 3 is similar to a joint Fourier transform cor-
reator. The use of volume, rather than thin, holograms and fractal grids
destroys the shift invariance of the correlator, making this architecture a
totally shift variant arbitrarily interconnectable system.

A basic geometrical limitation on the density of interconnections achiev-
able through volume holograms is due to the finite volume, V, of any real

" crystal. The refractive index n(r) of such a crystal under periodic boundary
conditions may be represented in the form-.5-"

S

6n(F) -~ j'' (8)
V

+ VV. --" !, + I (-)) 0, +1,2... (9)

Where n, is the amplitude of the Fourier component at spatial frequency

k, and L, is the length of the crystal in the i direction. Since the maximum
spatial frequency which may be Bragg matched to diffract light at wave-

- length A is 2k,, where k, = the sum in Eqn. 8 is finite in holographic
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applications. The number of spatial frequencies in the sum is S .
Psaltis et al. [2,31 demonstrated that S is sufficient to fully and indepen-
dently interconnect neural planes which are limited to fractal dimension i.
Thus in this previous work the issue of these geometric limitations was fully
resolved under the condition that processing nodes in the input and output
planes must be appropriately arranged on fractal grids. Other geometric
limitations arise due to finite numerical apertures and the physics of holo-
graphic recording mechanisms. These factors may be shown to contribute
a scaling factor to S which is independent of V and A. For V = 1 cm' and
A = 1m, vT is equal to 1012. In interconnecting neurons arranged on fractal
planes, even though the recording geometry typically allows access to only
1% of grating wavevector space, we still may achieve 101" interconnections

* per cm s .
We now address the question of whether this large number of grat-

ings can be supported in a photorefractive crystal, i.e. do photorefractive

* crystals have the capability of simultaneously storing 1010 gratings each
with sufficient diffraction efficiency? In this paper we answer this question
based on simple arguments in the context of a neural architecture. The
conclusions we reach are the same as those we arrive at through a more
thorough examination of the problem. Photorefractive holograms are pro-
duced in electrooptic crystal via the modulation of the index of refraction
by the space charge field created by an optically driven inhomogeneous
charge distribution. A neural network architecture implemented in volume
holograms performs a transformation of the form

E, ,,eik' ei €i + c.c. = ujeJ'0jieIRqirE, t + C.C. (10)

" between the field amplitude, E, oute i *kj, of the jth neuron and the field
amplitude, E,, , incident on the input of the t " neuron. c.c. denotes
the complex conjugate of the preceding term. 4, and O, are the phases of
the field amplitudes corresponding to the it-' and j"' neurons. i . is the

* phase of the grating which connects the ith and J1 h neurons. The diffraction
efficiencies r1ij are proportional to the component of the space charge density
in the crystal at spatial frequency K/j = k, - k, [29]. The total space charge
density due to N stored gratings is constrained at every point in the crystal
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to be less than the acceptor trap density. This implies that

where Y7 is the maximum diffraction efficiency when only one grating is
recorded. If 'ij is an independent uniformly distributed random variable
on (-r, 7r), then with high probability the right side of Eqn. (11) will not

exceed a few times its standard deviation, V/L rh, where ti1 is the rms value
of 77,. This fact allows us to find a simple limit for rh given by

1 7o (12)

2

Note that although we have assumed that the sums in Eqn. (11) are over a
set of incoherent sinusoids, this does not imply that the sum in Eqn. (10)
is incoherent. To illustrate this point imagine that ¢j = Oj - Oj. In
this case the terms in Eqn. (10) add coherently. However if ,- and Oj are
independent random variables the sums in Eqn. (11) still add incoherently.
Thus a random phase term in the transmittance at each neuron causes
the charge densities stored in the crystal to add incoherently but does not
necessarily destroy the coherence of the optical system.

The holographic transformation described above can be used to imple-
ment neural architectures which map an activity pattern described by the
outputs {x.} of the neurons on one neural plane to the outputs {yi} of
the next neural plane. In a coherent optical system xj is represented by
E j outei 4 i and wi . is represented by rhie j 04. Since most simple optical non-
linearities are based on absorption the transformation between {x,} and
{yi} typically takes the form

S = f( ij Xjf1) (13)

where f is a thresholding function implemented in the neural plane. This

functional form might be avoided using interferometic detection. In an
incoherent optical system xj is represented by jEj out 1 and wi . is represented
by 72.. The transformation between {xj} and {y,} takes the form

Yi f(Zw 1 Xj) (14)
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In either case the function f must provide sufficient gain, G, to regenerate
the signal power of the system after each layer. If we assume that each layer

contains v neurons then the relationship between the power incident on

a single neuron, I,, and the power output by a single neuron, Iout, for a
coherent system with bj 0i - Oj is

1 ,, - l ,c 7j rije"'Ej 0 te' ' N?7'I,,., - 'o t (15)
C coherent

From Eqn. (12) we find

coherent - (16)
,27 h

• For an incoherent system the corresponding relationship is

in 7 1 Ej IEtZ I , o =/r,7Io7 , = C (17)j 
Gincoherent

In this case Eqn. (12) yields

"--- (18)

Note that is the total diffraction efficiency of the volume holcgram. Since
G

this must be less than 1 we know that G > 1. r, is determined by the
physical properties of the crystal, including the maximum charge density
available for grating storage, the thickness of the crystal, and its the elec-
trooptic coefficients. For small 77, we may estimate 77, as ., ; AEL

. where L is the length of the crystal along the optical axis. For AE ; 10-5,

A 106 m and L : 102 m, 'o o(1). This means that in coherent sys-
tems relatively little gain (i.e. G = o(1)) is needed to recall a large number
of sinusoidal gratings stored in a photorefractive crystal. Of course as we

atempt to store arbitrarily many gratings other limits arise, but at least
0 . over a finite bandwidth of the electrooptic response of the crystal coherent

systems should have no difficulty in achieving interconnection densities on
the order of those implied by the geometrical constraints. Incoherent sys-

.-. tems, on the other hand, are unable to take advantage of holographic phase
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matching and are thus less efficient 130]. In order to achieve N 1010, for
example, we must supply a gain of G = 10 in each neural plane. Examples
of how G may be obtained optically include various combinations of image
intensifiers and spatial light modulators and multiwave mixing in nonlin-
ear materials. For example, an optically addressed spatial light modulator
such as the Hughes liquid crystal light valve is sensitive to approximately
lO1 w/cmn. If the read-out beam has an intensity of lw/cm2 then we realize
a gain of 10'.

The choice between coherent and incoherent implementations of optical
neural networks offers advantages and disadvantages on both sides. The in-

. coherent system is easier to implement but requires the large gain described
above and offers only unipolar activities and interconnection strengths. The
coherent implementation offers bipolar activities and interconnections but
requires rigid phase stability in the optical system over potentially very long
learning cycles. This stability is not difficult to achieve in prescribed learn-
ing architectures, but may be more difficult to achieve in adaptive systems.
In addition, coherent systems generally square the signal incident on the
nonlinearity, unless interferometric detection is used. Interferometric de-
tection is difficult to implement in a complex optical system. Although the

,.- .incoherent system is straight forward to implement, this simplicity comes

"-" - at a cost of requiring biasing to compensate for unipolar values and ex-
-- '- ternal gain. The coherent system is more elegant in that these additional

mechanisms are not necessary, but it is more sensitive to specific design
issues. One way of making coherent implementations more robust might
be to include adaptive optics, such as phase conjugate devices, to compen-
sate for phase instabilities. Although these devices might also be needed

* ". . *in adaptive incoherent systems to detect the phase of a grating in order to
correctly update the associated interconnection, in the incoherent case it
is only necessary to detect the current state of the phase. In the coherent
case it is generally necessary to continuously track the phase.

4.4 Learning architectures
Ile We now turn to the question of how we can specify the strength of each in-

terconnection. There is a nice compatibility between simple (multiplicative)
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Hebbian learning and holography; the strength of the connection between
..two neurons can be modified by recording a hologram with light from the

two neurons. It is not possible, however, to record multiple holograms in
a single crystal independently. Thus far we have shown that the space
charge in a photorefractive crystal may be arranged to achieve a very large
number of independent interconnections. The task that remains is to find
a means of using optical beams from outside the crystal to correctly ar-
range the three dimensional charge distribution. In particular, we must
find means to address the full three dimensional bandwidth of the crystal
from two dimensional neural planes. In order to successfully implement
learning with photorefractive crystals the nonlinear dynamics that govern
the multiple exposure of holograms in a photorefractive medium must be
reconciled with the nonlinear equations that describe the iterative proce-
dures of learning algorithms. It is extremely difficult to fully characterize
analytically the ability of an optical system to simulate a particular learn-
ing algorithm. We will have to rely heavily on experiment in the search for
the optimum match between nonlinear optics and learning procedures for
neural networks. In this section we describe learning architectures which
are relatively simple to implement experimentally and which can be used
to evaluate the capability of photorefractive crystals to store information
in the form of connectivity patterns in a neural computer.

The first learning algorithm we consider is the prescribed sum of outer
products of Eqn. (2). As we saw in the previous section, a sum of this sort
may be implemented as a series of exposures of a volume hologram. In
a photorefractive crystal, the exposure of a new hologram partially erases
previously recorded holograms. This places an upper limit on the maxi-
mum number of holograms that can be recorded and thus the number of
associations, M, that can be stored in the crystal. The limit is found by
determining the minimum tolerable diffraction efficiency for each associa-

"-.. tion and solving for the number of exposures that will yield this efficiency.
Let A, be the amplitude of the mh hologram recorded. After a total of

0 M exposures

A, = A(e )exp(-Z , (19)

where A, is the saturation amplitude of a hologram recorded in the pho-
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torefractive crystal, t, is the exposure time for the m"h hologram, 7-, and 7-,
are, respectively, the characteristic time constants for recording and eras-
ing a hologram in the crystal. We allow for the case that r, 0 7-, in light

of limited evidence that this may be the case in some crystals [31]. Ionic
'. \ conductivity is one mechanism leading to multiple time constants. We can

use several different criteria for selecting the exposure schedule tin. For
instance if we require Am Am+, for all m we obtain

*t' t Tn r1 M m> (21)

which yields
A,,

A, Am M (22)

For the case r,. $ T, we define pm such that tm =i pTe,. Since, from Eqn. (19),
limM-irf A, = 0 Eqn. (20) may be satisfied only if limi,,fn tm =0. Thus
for some m,, > 1 pm, < 1 and t,< «Tr.. Then, from Eqn. (20),

t . m I; , = (i ~) Te (22)

or
P +1 Pm0  (23)

1 +P m

By induction, for m > mo

PM (~ 0 ±. (24)

As m grows large with m, fixed, Eqn. (24) can be shown to yield

Pm -(25)

m

and
tm = (26)

m
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The value of m for which this approximation holds increases with the ratio
L. In the case r,. = r, for example, - = 0.82 and _ - 0.95. In any case,

I, 3 lot1 0
for Al >> m, for some m, satisfying the constraints preceding Eqn. (22),

A, = AM = Ao(1 - ) (26)

for all m. Solving for M with A, < A, we find a limit for M given by

M (27),rr A,.

This result agrees well with what we might expect intuitively. The number
of exposures allowed increases in proportion with the ratio L (if we erase
slowly we can store more holograms) and the ratio of the maximum possible
and minimum detectable grating amplitudes.

The second architecture we will discuss is capable of implementing the

backwards error propagation algorithm [23,24] in a multilayered network.
The architecture, shown in Fig. 4, is a variation on a system we have de-
scribed previously [6]. The system as shown has two layers but an arbitrary

number of layers can be implemented as a straightforward extension. An
. input training pattern is placed at plane N1 . The pattern is then intercon-

nected to the intermediate (hidden) layer N2 via the volume hologram Hl.

A two dimensional spatial light modulator placed at N2 performs a soft
thresholding operation on the light incident on it, simulating the action of
a 2-D array of neurons, and relays the light to the next stage. Hologram H 2

interconnects N2 to the output plane N 4 where a spatial light modulator
performs the final thresholding and produces a 2-D pattern representing
the response of the network to the particular input pattern. This output
pattern is compared to the desired output and the appropriate error im-

6 age is generated (either optically or with the aid of an image detector and
re-recording) on the spatial light modulator N 4 . The undiffracted beams
from N, and N 2 are recorded on spatial light modulators at N3 and N5,
respectively. The signals stored at N3 , N 4, and N5 are then illuminated
from the right so that light propagates back towards the left. The back
propagation algorithm demands a change in the interconnection matrix
stored in H2 given by

= , W acf'(zn)X7ot  (28)
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where a is a constant, e, is the error signal at the ih neuron in N 4, x" is the
input diffracted onto the ith neuron in N 4 from N2, f'(x) is the derivative of
the thresholding function f(x) which operates on the input to each neuron
in the forward pass, and xjt0t is the output of the jth neuron in N 2. Each
neuron in N4 is illuminated from the right by the error signal Ei and the
backward transmittance of each neuron is proportional to the derivative of
the forward output evaluated at the level of the forward propagating signal.
As we have described above, the hologram recorded in H2 is the outer
product of the activity patterns incident from N 4 and N5 . Thus the change
made in the holographic interconnections stored in H2 is proportional to
the change described by Eqn. (28).

The change in the interconnection matrix stored in H, required under
the back propagation algorithm is

=- f af'(x i)W( 2 1f'(xn)4 (29)

where x' is the activity on mth input on N 1. The error signal applied to N4
produces a diffracted signal at the 11h neuron in N 2 which is proportional

N. to

- Z (30)

We assume that during the correction cycle for H, N 5 is inactive. Once
again, if the backward transmittance of the 1th neuron is proportional to
f'(x ") then the change made to the hologram by the signals propagating
back from N2 and N 3 is proportional to the change prescribed in Eqn. (29).

A key element in this architecture is the assumption that the spatial
light modulators at N 2 and N4 may have transmittances which may be
switched between a function f for the forward propagating signal and~z
f'(z) for the back propagating signal. In both cases x represents the for-

ward propagating signal. Two of us (Wagner and Psaltis) have previously
described how nonlinear etalon switches might be used in this application
7,81. Electrooptic spatial light modulators might also be used [8].

We have performed an experiment to show how a single layer of error
driven learning might be implemented. This experiment is shown schemat-
ically in Fig. 5. In this case, the stored vectors x(m) correspond to two
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dimensional patterns recorded on a liquid crystal light valve from a video
monitor. The output vectors y(mn) correspond to the single bit output of the
detector, D. The input vectors are imaged onto a photorefractive crystal
via two separate paths. The strength of the grating between the image of
the input along one path and the image along the other path is read out by
light polarized orthogonally to the write beams. One of the write beams is
circularly polarized while the other is linearly polarized. The polarizer, P,
blocks the out of plane component of both the linearly polarized beam and
the diffracted circularly polarized beam, passing only the in plane diffracted
beam. This allows readout of the grating as it is recorded. The diffracted
light is imaged onto the detector, D. This system is to classifies input pat-
terns presented to it into two classes according to whether the output of
the detector when the pattern is presented is high or low. If during training
a pattern we would like to classify as high yields a low response then the
hologram is reinforced by exposing the crystal to the interference of the two
beams, each carrying the image of that pattern. This exposure continues
until the diffracted output increases by a fixed amount. If a pattern which
should be classified as low is found during training to yield a diffracted out-
put that is too high then the hologram diffracting that pattern is erased by
a fixed amount by exposing the crystal with only one of the imaging beams.
(One beam is blocked by the shutter, SH). An experimental learning curve

- showing the diffracted intensities for each learning cycle for four training
patterns in a system implemented using an Fe doped LiNbO3 crystal is
shown in Fig. 6. The system classifies the patterns 0 and 2 as high and 1

'- and 3 as low. At first all patterns are low. The first two learning cycles
are intended to drive the outputs of 0 and 2 above threshold. However,
they have the undesired effect of also driving pattern 3 above threshold.
Thus in the third learning cycle 3 is erased. In this particular erase cycle
the erasure was too severe. Notice that pattern 2 is erased in this cycle,

- even though there is no overlap between this pattern and pattern 3. The
reason for this is that the two images of pattern 3 are in focus only over a
limited region of the crystal volume. Outside of this region the unfocused

S image may erase the hologram formed by pattern 2. In the subsequent two
cycles patterns 0 and 2 are again reinforced. This has the unwanted effect
of driving both patterns 1 and 3 just above threshold. In the final two
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cycles patterns 1 and 3 are erased until both are below threshold. At this
point all patterns are correctly classified and learning stops.

In this experiment the photorefractive crystal acts as a two dimensional
1 .modulator. The diffraction efficiency between the two imaging paths is

high where the patterns 0 and 2 overlap and low where patterns 3 and 1
overlap. As mentioned above, a problem arises in the fact that the overlap
is well defined only in the image plane, meaning the crystal must be thinner
than the depth of focus of the images. In order to utilize the full capacity

of photorefractive volume holograms it will be necessary to move beyond
" . this implementation to architectures utilizing the full three dimensional

capacity of the crystal as discussed above. Nevertheless, this experiment
demonstrates in a rudimentary way how learning in photorefractive crystals

* may proceed.

4.5 Conclusion

Photorefractive crystals represent a promising interconnection technology
for optical neural computers. The ease of dynamic holographic modification
of interconnections in these crystals allows the implementation of a large
class of outer product learning networks. The density of interconnections
which may be implemented in these crystals is limited by physical and
geometrical constraints to the range of 108 to 1010 per cm 3 . In order to
achieve these limits consideration must be given to the exposure schedule
of the crystal.
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Figure 5. Simple photorefractive learning system. PB is a polarizing bearnsplitter. LI

and L2 are imaging lenses. WP is a quarter waveplate. SH is a shutter. P is a polarizer.
D is a detector. M is a mirror.

1 3

S.A.

record 0

S..

"-erase 3

% Figure 6. Experimental learning curves.

83

@2



hA IF

t o** 0 00 0 0 0 .- 1** 11111111)1
-Um


